
THE PREPARATION OF N-TRICHLOROACETAMIDO-1, 2-DIENES

Larry E. Overman^{*1}, Charles K. Marlowe, and Lane A. Clizbe Department of Chemistry, University of California, Irvine, California 92717

Although a variety of heteroatom-substituted allenes have been prepared, N-acylamino-1, 2dienes are virtually unknown.² The preparation of 1, 2-propadienyl-2-pyrrolidinone by base catalyzed rearrangement of 1-(2-propynyl)-2-pyrrolidinone³ is, to our knowledge, the only reported synthesis of an N-allenamide. We recently proposed⁴ that trichloroacetamido-1, 2-dienes (2) were intermediates in the thermal conversion of propargylic trichloroacetimidates to 1-trichloroacetamido-1, 3-dienes (3), eq 1. In this letter we report that a variety of N-allenamides 2 may be isolated from the thermal rearrangement of imidates 1.

Thermolysis of imidates $1a-1e^{5}$ in refluxing xylenes (0.1<u>M</u>, containing 1% 4-<u>tert</u>-butylcatechol) for 1-4 hr afforded, after silica gel chromatography and recrystallization, the pure allenamides 2a-2e in isolsted yields of 10-20% (see Table). Purification of 2 was attended with substantial losses and the crude yields (¹H-NMR or HPLC analysis) were significantly (<u>ca</u>. 2 times) higher. Trichloroacetamido-1, 2-dienes 2^{6,7} showed characteristic⁸C=C stretching absorptions in the infrared spectrum (CCl₄) at 1965-1975 cm⁻¹, and the expected ⁹low field absorptions for the central vinylic carbon in the ¹³ C-NMR spectrum (CDCl₃) at 193-203 ppm. Heating allene 2d in refluxing xylene resulted in its conversion (at a rate 2-3 times slower than its formation from 1d) in high yield to 2, 2, 2-trichloro-N-[(1Z, 3E)-1, 3-pentadienyl] acetamide (3, R¹= H, R³=CH₉).⁴

Although [3,3]-sigmatropic rearrangement of imidates 1 affords N-trichloroacetamido-1, 2dienes 2 in low isolated yield, the procedure is experimentally simple and represents the only general synthetic route to allenamides of this type.

599

	R ¹	R ²	mp, ⁰C	Time, hr	Isolated Yield, %
2a	Н	н	70-71	4.5	11
2b	Н	(CH ₃) ₃ C	90-91	1	19
2c	(CH ₃) ₃ C	(CH ₃) ₃ C	59-60	3	14
2d	н	CH ₃ CH ₂	69-70	1.1	16
2e	н	(Сн ₃) ₂ Сн	63-65.5	1.8	18

Table. Synthesis of Trichloroacetamido-1, 2-Dienes

<u>Acknowledgment.</u> Support from the National Science Foundation is gratefully acknowledged.

References and Notes

- 1. Camille and Henry Dreyfus Teacher-Scholar Award Recipient, 1976-1981.
- T.F. Rutledge, "Acetylenes and Allenes", Reinhold Book Corp., New York, N.Y., 1969, Chapter 1; M. Murray in "Methoden Der Organische Chemie (Houben-Weyl)", E. Müller, Ed., Vol 5/2a, George Thieme Verlag, Stuttgart, 1977, p 967.
- 3. W.B. Dickinson and P.C. Lang, Tetrahedron Lett., 3035 (1967).
- 4. L.E. Overman and L.A. Clizbe, J. Am. Chem. Soc., 98, 2352, 8295 (1976).
- Prepared in high yield by base catalyzed condensation of the corresponding propargylic alcohol with trichloroacetonitrile: L. Overman, <u>J. Am. Chem. Soc.</u>, 98, 2901 (1976).
- 6. Allenes 2a-2c gave correct combustion analyses, and allenes 2d and 2e exhibited high resolution mass spectrum consistent with their composition.
- 7. 2, 2, 2-Trichloro-N-(1, 2-propadienyl) acetamide (2a): IR (CCl₄, 0.5 <u>M</u>) 3440 (NH), 1965 (C=C=C), and 1720 (C=O) cm⁻¹; ¹H-NMR (CCl₄, δ) 7.9 (broad s, N<u>H</u>), 6.86 (dt, J=6.3, and 11Hz, =C<u>H</u>N), 5.44 (d, J=6.3 Hz, =CH₂); ¹³C-NMR (CDCl₃, δ) 202.7 (C=C=C), 159.0(C=O), 94.0 (=<u>C</u>HN), 92.0 (<u>CCl₃</u>), 87.3 (=<u>C</u>H₂); <u>Anal</u>. Calcd for C₅H₄Cl₃NO: C, 29.96; H, 2.01; N, 6.99. Found: C, 30.12; H, 2.04; N, 6.96.
- K. Nakanishi and P. H. Solomon, "Infrared Absorption Spectroscopy", 2nd ed, Holden-Day, San Francisco, 1977, pp 22-23.
- 9. G.C. Levy and G.L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists", Wiley-Interscience, 1972, pp 67-69.

(Received in USA 23 October 1978)